Section 6.5: Solving Linear Inequalities using Multiplication/Division

Complete Investigation Worksheet

Part C: Multiply by a Positive/Negative Number

Operation	-4 < -2	6 > 2
MULTIPLY each side of the inequality by a positive number		
MULTIPLY each side of the inequality by a negative number		

|--|

Part D: Divide by a Positive/Negative Number

Operation	-4 < -2	6 > 2
DIVIDE each side of the inequality by a positive number		
DIVIDE each side of the inequality by a negative number		

Do the inequalities hold true?

SUMMARY OF INEQUALITIES

C.	When you MULTIPLY each side of an inequality by a positive number
	When you MULTIPLY each side of an inequality by a negative number
D.	When you DIVIDE each side of an inequality by a positive number
	When you DIVIDE each side of an inequality by a negative number

Solving inequalities is the exact same as solving an equation with **one exception**:

Example 1:

Solve the inequality and graph the solution.

c)
$$\frac{x}{-4} > -3$$

$$\leftarrow$$

Example 2:

Solve and verify: -2.6a + 14.6 > -5.2 + 1.8a

Mathy up Section 6.5	Math9 U6 Section	on 6.5
----------------------	------------------	--------

Example 3:

A super-slide charges \$1.25 to rent a mat and \$0.75per ride. Jason has \$10.25. How many rides can Jason go on?

- a) Choose a variable and write an inequality.
- b) Solve the problem.

c) Graph